176 research outputs found

    Involvement of the Cav3.2 T-type calcium channel in thalamic neuron discharge patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mice that have defects in their low-threshold T-type calcium channel (T-channel) genes show altered pain behaviors. The changes in the ratio of nociceptive neurons and the burst firing property of reticular thalamic (RT) and ventroposterior (VP) neurons in Cav3.2 knockout (KO) mice were studied to test the involvement of thalamic T-channel and burst firing activity in pain function.</p> <p>Results</p> <p>Under pentobarbital or urethane anesthesia, the patterns of tonic and burst firings were recorded in functionally characterized RT and VPL neurons of Cav3.2 KO mice. Many RT neurons were nociceptive (64% under pentobarbital anesthesia and 50% under urethane anesthesia). Compared to their wild-type (WT) controls, fewer nociceptive RT neurons were found in Cav3.2 KO mice. Both nociceptive and tactile RT neurons showed fewer bursts in Cav3.2 KO mice. Within a burst, RT neurons of Cav3.2 KO mice had a lower spike frequency and less-prominent accelerando-decelerando change. In contrast, VP neurons of Cav3.2 KO mice showed a higher ratio of bursts and a higher discharge rate within a burst than those of the WT control. In addition, the long-lasting tonic firing episodes in RT neurons of the Cav3.2 KO had less stereotypic regularity than their counterparts in WT mice.</p> <p>Conclusions</p> <p>RT might be important in nociception of the mouse. In addition, we showed an important role of Cav3.2 subtype of T-channel in RT burst firing pattern. The decreased occurrence and slowing of the bursts in RT neurons might cause the increased VP bursts. These changes would be factors contributing to alternation of pain behavior in the Cav3.2 KO mice.</p

    Perceptual expertise improves category detection in natural scenes

    Get PDF
    There is much debate about how detection, categorization, and within-category identification relate to one another during object recognition. Whether these tasks rely on partially shared perceptual mechanisms may be determined by testing whether training on one of these tasks facilitates performance on another. In the present study we asked whether expertise in discriminating objects improves the detection of these objects in naturalistic scenes. Self-proclaimed car experts (N = 34) performed a car discrimination task to establish their level of expertise, followed by a visual search task where they were asked to detect cars and people in hundreds of photographs of natural scenes. Results revealed that expertise in discriminating cars was strongly correlated with car detection accuracy. This effect was specific to objects of expertise, as there was no influence of car expertise on person detection. These results indicate a close link between object discrimination and object detection performance, which we interpret as reflecting partially shared perceptual mechanisms and neural representations underlying these tasks: the increased sensitivity of the visual system for objects of expertise – as a result of extensive discrimination training – may benefit both the discrimination and the detection of these objects. Alternative interpretations are also discussed

    Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns

    Get PDF
    BACKGROUND: Loosening of associations and thought disruption are key features of schizophrenic psychopathology. Alterations in neural networks underlying this basic abnormality have not yet been sufficiently identified. Previously, we demonstrated that spatio-temporal clustering of magnetic brain responses to pictorial stimuli map categorical representations in temporal cortex. This result has opened the possibility to quantify associative strength within and across semantic categories in schizophrenic patients. We hypothesized that in contrast to controls, schizophrenic patients exhibit disordered representations of semantic categories. METHODS: The spatio-temporal clusters of brain magnetic activities elicited by object pictures related to super-ordinate (flowers, animals, furniture, clothes) and base-level (e.g. tulip, rose, orchid, sunflower) categories were analysed in the source space for the time epochs 170–210 and 210–450 ms following stimulus onset and were compared between 10 schizophrenic patients and 10 control subjects. RESULTS: Spatio-temporal correlations of responses elicited by base-level concepts and the difference of within vs. across super-ordinate categories were distinctly lower in patients than in controls. Additionally, in contrast to the well-defined categorical representation in control subjects, unsupervised clustering indicated poorly defined representation of semantic categories in patients. Within the patient group, distinctiveness of categorical representation in the temporal cortex was positively related to negative symptoms and tended to be inversely related to positive symptoms. CONCLUSION: Schizophrenic patients show a less organized representation of semantic categories in clusters of magnetic brain responses than healthy adults. This atypical neural network architecture may be a correlate of loosening of associations, promoting positive symptoms

    The Neuronal Transition Probability (NTP) Model for the Dynamic Progression of Non-REM Sleep EEG: The Role of the Suprachiasmatic Nucleus

    Get PDF
    Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP) – in fitting the data well – successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN) activity we show that the SCN has the information required to provide a threshold-triggered flip-flop for timing the towards-and-away alternations, information provided by sleep-relevant feedback to the SCN. NTP then determines the pattern of spectral power within each dynamic-state. NTP was fitted to individual NREM episodes 1–4, using data from 30 healthy subjects aged 20–30 years, and the quality of fit for each NREM measured. We show that the model fits well all NREM episodes and the best-fit probability-set is found to be effectively the same in fitting all subject data. The significant model-data agreement, the constant probability parameter and the proposed role of the SCN add considerable strength to the model. With it we link for the first time findings at cellular level and detailed time-course data at EEG level, to give a coherent picture of NREM dynamics over the entire night and over hierarchic brain levels all the way from the SCN to the EEG

    Uncovering the Genetic Landscape for Multiple Sleep-Wake Traits

    Get PDF
    Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent of the genetic regulatory mechanisms of this complex and universal behavior

    Phospholipase C-β4 Is Essential for the Progression of the Normal Sleep Sequence and Ultradian Body Temperature Rhythms in Mice

    Get PDF
    BACKGROUND: THE SLEEP SEQUENCE: i) non-REM sleep, ii) REM sleep, and iii) wakefulness, is stable and widely preserved in mammals, but the underlying mechanisms are unknown. It has been shown that this sequence is disrupted by sudden REM sleep onset during active wakefulness (i.e., narcolepsy) in orexin-deficient mutant animals. Phospholipase C (PLC) mediates the signaling of numerous metabotropic receptors, including orexin receptors. Among the several PLC subtypes, the beta4 subtype is uniquely localized in the geniculate nucleus of thalamus which is hypothesized to have a critical role in the transition and maintenance of sleep stages. In fact, we have reported irregular theta wave frequency during REM sleep in PLC-beta4-deficient mutant (PLC-beta4-/-) mice. Daily behavioral phenotypes and metabotropic receptors involved have not been analyzed in detail in PLC-beta4-/- mice, however. METHODOLOGY/PRINCIPAL FINDINGS: Therefore, we analyzed 24-h sleep electroencephalogram in PLC-beta4-/- mice. PLC-beta4-/- mice exhibited normal non-REM sleep both during the day and nighttime. PLC-beta4-/- mice, however, exhibited increased REM sleep during the night, their active period. Also, their sleep was fragmented with unusual wake-to-REM sleep transitions, both during the day and nighttime. In addition, PLC-beta4-/- mice reduced ultradian body temperature rhythms and elevated body temperatures during the daytime, but had normal homeothermal response to acute shifts in ambient temperatures (22 degrees C-4 degrees C). Within the most likely brain areas to produce these behavioral phenotypes, we found that, not orexin, but group-1 metabotropic glutamate receptor (mGluR)-mediated Ca(2+) mobilization was significantly reduced in the dorsal lateral geniculate nucleus (LGNd) of PLC-beta4-/- mice. Voltage clamp recordings revealed that group-1 mGluR-mediated currents in LGNd relay neurons (inward in wild-type mice) were outward in PLC-beta4-/- mice. CONCLUSIONS/SIGNIFICANCE: These lines of evidence indicate that impaired LGNd relay, possibly mediated via group-1 mGluR, may underlie irregular sleep sequences and ultradian body temperature rhythms in PLC-beta4-/- mice

    Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry

    Get PDF
    Schizophrenia is one of the major psychiatric disorders, and lipids have focused on the important roles in this disorder. In fact, lipids related to various functions in the brain. Previous studies have indicated that phospholipids, particularly ones containing polyunsaturated fatty acyl residues, are deficient in postmortem brains from patients with schizophrenia. However, due to the difficulties in handling human postmortem brains, particularly the large size and complex structures of the human brain, there is little agreement regarding the qualitative and quantitative abnormalities of phospholipids in brains from patients with schizophrenia, particularly if corresponding brain regions are not used. In this study, to overcome these problems, we employed matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS), enabling direct microregion analysis of phospholipids in the postmortem brain of a patient with schizophrenia via brain sections prepared on glass slides. With integration of traditional histochemical examination, we could analyze regions of interest in the brain at the micrometric level. We found abnormal phospholipid distributions within internal brain structures, namely, the frontal cortex and occipital cortex. IMS revealed abnormal distributions of phosphatidylcholine molecular species particularly in the cortical layer of frontal cortex region. In addition, the combined use of liquid chromatography/electrospray ionization tandem mass spectrometry strengthened the capability for identification of numerous lipid molecular species. Our results are expected to further elucidate various metabolic processes in the neural system

    PAK1 Protein Expression in the Auditory Cortex of Schizophrenia Subjects

    Get PDF
    Deficits in auditory processing are among the best documented endophenotypes in schizophrenia, possibly due to loss of excitatory synaptic connections. Dendritic spines, the principal post-synaptic target of excitatory projections, are reduced in schizophrenia. p21-activated kinase 1 (PAK1) regulates both the actin cytoskeleton and dendritic spine density, and is a downstream effector of both kalirin and CDC42, both of which have altered expression in schizophrenia. This study sought to determine if there is decreased auditory cortex PAK1 protein expression in schizophrenia through the use of quantitative western blots of 25 schizophrenia subjects and matched controls. There was no significant change in PAK1 level detected in the schizophrenia subjects in our cohort. PAK1 protein levels within subject pairs correlated positively with prior measures of total kalirin protein in the same pairs. PAK1 level also correlated with levels of a marker of dendritic spines, spinophilin. These latter two findings suggest that the lack of change in PAK1 level in schizophrenia is not due to limited sensitivity of our assay to detect meaningful differences in PAK1 protein expression. Future studies are needed to evaluate whether alterations in PAK1 phosphorylation states, or alterations in protein expression of other members of the PAK family, are present in schizophrenia
    corecore